Follow UP-1

Sun, X., A. Y. Shih, H. C. Johannssen, H. Erb, P. Li and T. H. Murphy (2006). “Two-photon Imaging of Glutathione Levels in Intact Brain Indicates Enhanced Redox Buffering in Developing Neurons and Cells at the Cerebrospinal Fluid and Blood-Brain Interfacehttp://www.jbc.org/cgi/content/abstract/281/25/17420 

Katoh, Y., K. Itoh, E. Yoshida, M. Miyagishi, A. Fukamizu and M. Yamamoto (2001). “Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription.” Genes to Cells 6(10): 857-868.

http://www.genestocellsonline.org/cgi/content/abstract/6/10/857

Stimulation of NF-E2 binding by CREB-binding protein (CBP)-mediated acetylation

http://www.jbc.org/cgi/content/abstract/276/14/10715

A. K. Jain and A. K. Jaiswal
Phosphorylation of Tyrosine 568 Controls Nuclear Export of Nrf2
J. Biol. Chem., April 28, 2006; 281(17): 12132 – 12142.
[Abstract] [Full Text] [PDF]

 A. Kobayashi, M.-I. Kang, Y. Watai, K. I. Tong, T. Shibata, K. Uchida, and M. Yamamoto
Oxidative and Electrophilic Stresses Activate Nrf2 through Inhibition of Ubiquitination Activity of Keap1
Mol. Cell. Biol., January 1, 2006; 26(1): 221 – 229.
[Abstract] [Full Text] [PDF]

 A. Y. Shih, P. Li, and T. H. Murphy
A Small-Molecule-Inducible Nrf2-Mediated Antioxidant Response Provides Effective Prophylaxis against Cerebral Ischemia In Vivo
J. Neurosci., November 2, 2005; 25(44): 10321 – 10335.
[Abstract] [Full Text] [PDF]

 H. Gong, S. V. Singh, S. P. Singh, Y. Mu, J. H. Lee, S. P. S. Saini, D. Toma, S. Ren, V. E. Kagan, B. W. Day, P. Zimniak, and W. Xie
Orphan Nuclear Receptor Pregnane X Receptor Sensitizes Oxidative Stress Responses in Transgenic Mice and Cancerous Cells
Mol. Endocrinol., February 1, 2006; 20(2): 279 – 290.
[Abstract] [Full Text] [PDF]

 J. Ding, E. Allen, W. Wang, A. Valle, C. Wu, T. Nardine, B. Cui, J. Yi, A. Taylor, N. L. Jeon, S. Chu, Y. So, H. Vogel, R. Tolwani, W. Mobley, and Y. Yang
Gene targeting of GAN in mouse causes a toxic accumulation of microtubule-associated protein 8 and impaired retrograde axonal transport
Hum. Mol. Genet., May 1, 2006; 15(9): 1451 – 1463.
[Abstract] [Full Text] [PDF]

 C. Goldring, N. Kitteringham, R. Jenkins, I. Copple, J.-F. Jeannin, and B. K. Park
Plasticity in cell defence: access to and reactivity of critical protein residues and DNA response elements
J. Exp. Biol., June 15, 2006; 209(12): 2337 – 2343.
[Abstract] [Full Text] [PDF]

Medium Priority

 U. auf dem Keller, M. Huber, T. A. Beyer, A. Kumin, C. Siemes, S. Braun, P. Bugnon, V. Mitropoulos, D. A. Johnson, J. A. Johnson, D. Hohl, and S. Werner
Nrf Transcription Factors in Keratinocytes Are Essential for Skin Tumor Prevention but Not for Wound Healing
Mol. Cell. Biol., May 15, 2006; 26(10): 3773 – 3784.
[Abstract] [Full Text] [PDF]

 S. Kannan and A. K. Jaiswal
Low and High Dose UVB Regulation of Transcription Factor NF-E2-Related Factor 2
Cancer Res., September 1, 2006; 66(17): 8421 – 8429.
[Abstract] [Full Text] [PDF]

Nrf2-deficient female mice develop lupus-like autoimmune nephritis

http://www.nature.com/ki/journal/v60/n4/abs/4492554a.html

Proteomic Profiling Drug-Induced Apoptosis in Non-Small Cell Lung Carcinoma

http://cancerres.aacrjournals.org/cgi/content/abstract/63/20/6928

Low Priority

 J. H. An, K. Vranas, M. Lucke, H. Inoue, N. Hisamoto, K. Matsumoto, and T. K. Blackwell
Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3
PNAS, November 8, 2005; 102(45): 16275 – 16280.
[Abstract] [Full Text] [PDF]

Modulation of nuclear factor E2-related factor 2-mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin
Mol. Cancer Ther., January 1, 2006; 5(1): 39 – 51.
[Abstract] [Full Text] [PDF]

 M. Ushio-Fukai
Localizing NADPH Oxidase-Derived ROS
Sci. STKE, August 22, 2006; 2006(349): re8 – re8.
[Abstract] [Full Text] [PDF] Abstract: Reactive oxygen species (ROS) function as signaling molecules to mediate various biological responses, including cell migration, growth, and gene expression. ROS are diffusible and short-lived molecules. Thus, localizing the ROS signal at the specific subcellular compartment is essential for activating redox signaling events after receptor activation. NADPH (nicotinamide adenine dinucleotide phosphate) oxidase is one of the major sources of ROS in vasculature; it consists of a catalytic subunit (Nox1, Nox2, Nox3, Nox4, or Nox5), p22phox, p47phox, p67phox, and the small guanosine triphosphatase Rac1. Targeting of NADPH oxidase to focal complexes in lamellipodia and membrane ruffles through the interaction of p47phox with the scaffold proteins TRAF4 and WAVE1 provides a mechanism for achieving localized ROS production, which is required for directed cell migration. ROS are believed to inactivate protein tyrosine phosphatases, which concentrate in specific subcellular compartments, thereby establishing a positive feedback system that activates redox signaling pathways to promote cell movement. Additionally, ROS production may be localized through interactions of NADPH oxidase with signaling platforms associated with lipid rafts and caveolae, as well as with endosomes. There is also evidence that NADPH oxidase is found in the nucleus, indicating its involvement in redox-responsive gene expression. This review focuses on targeting of NADPH oxidase to discrete subcellular compartments as a mechanism of localizing ROS and activation of downstream redox signaling events that mediate various cell functions.

 E. Hinoi, S. Fujimori, L. Wang, H. Hojo, K. Uno, and Y. Yoneda
Nrf2 Negatively Regulates Osteoblast Differentiation via Interfering with Runx2-dependent Transcriptional Activation
J. Biol. Chem., June 30, 2006; 281(26): 18015 – 18024.
[Abstract] [Full Text] [PDF]

Advertisements

About this entry